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The Johann Bernoulli Lecture is
organised by the Johann Bernoulli
Stichting in cooperation with
Studium Generale Groningen.

Come forth into the light of things
Let nature be your teacher
Wordsworth

At first blush, mathematics on the one hand and
biology on the other, are an unlikely pairing:
abstract, symbolic-numeric computation, versus
'wet', evolving and living organisms. However,
we find that there is a great abundance of
mathematical structure in biological objects,
from fractals found in the branches of an oak
tree to the symmetries of DNA's double helix.
Throughout history, mathematicians have been
fascinated by biology. the classic studies of
inheritance by Gregor Mendel, were an exercise
not in biology, but in statistical inference. Alan
Turing studied the morphogenesis of embryos
invoking reaction-diffusion equations. And
Erwin Schrodinger in What's life? envisioned life
as an aperiodic crystal.

Likewise, biology has inspired mathematicians
and engineers to work for instance on massive
analog synaptic computing, neural networks and
machine learning. Or on genetic algorithms and
evolutionary programming techniques that
mimic Darwin's 'survival-of-the-fittest'.

In recent years, biology and mathematics have
undergone an increasingly intense
interdisciplinary merger, leading to new
scientific fields such as bioinformatics and systems
biology. Several major breakthroughs have
catalyzed this development. In biology for
instance, the

description of the double helix 50 years ago, and
the unraveling of the human genome has
provided us with some deep insights into the
mathematical codes of life itself. In engineering,
new devices have been developed, such as
microarrays and DNA chips, that allow for the
simultaneous measurement of the expression
levels of thousands of genes. Moreover, global
connectivity over the World Wide Web ensures
that we can access biological databases, the

floating point operations. This has resulted in
new emerging scientific fields such as functional
and structural genomics, computational
biomedicine, metabolic pathway analysis,
combinatorial drug design, systems biology,
evolutionary modeling and phylogenetic
footprinting, and a whole collection of
neologisms ending in 'omics' such as
transcriptomics, proteomics, metabolomics and
"-omes' such as the transcriptome, the proteome,
the metabolome, the interactome etc...

In this lecture, we will guide the audience
through the historical origins of bioinformatics
and systems biology, by elaborating on those
major breakthroughs. We will illustrate the
presentation with many examples of current
mathematical and biological challenges,
including disease management, computational
biomedicine and diagnostics in oncology,
unraveling the mitotic cycle of yeast and motif’
detection in DNA sequences of plants.

Bart De Moor (1960) obtained in 1983 his
Master Degree in Electrical Engineering at the
Katholieke Universiteit Leuven, Belgium, and a
PhD in Engineering at the same university in
1988. He spent two years as a Visiting Research
Associate at Stanford University (1988-1990) at
the departments of Electrical Engineering (ISL,
Prof. Kailath) and Computer Science (Prof.
Golub). Currently, he is a full professor at the
Department of Electrical Engineering in Leuven.
Currently, he is leading a research group of 39
PhD students and 8 postdocs and in the recent
past, 16 PhDs were obtained under his guidance.
He has been teaching at and been a member of
PhD jury's in several universities in Europe and
the US.

His work has won him several scientific awards
(Leybold-Heraeus Prize (1986), Leslie Fox Prize
(1989), Guillemin-Cauer best paper Award of
the IEEE Transaction on Circuits and Systems
(1990), Laureate of the Belgian Royal Academy
of Sciences (1992), bi-annual Siemens Award
(1994), best paper award of Automatica (IFAC,
1996), IEEE Signal Processing Society Best
Paper Award (1999). He is an associate editor of
several scientific journals.

From 1991-1999 he was the chief advisor on
Science and Technology of several ministers of
the Belgian Federal Government and the
Flanders Regional Governments.

He was and/or is in the board of 3 spin-off
companies (www.ipcos.be, wwwdata4s.com,
www.tml.be), of the Flemish Interuniversity
Institute for Biotechnology, the Study Center for
Nuclear Energy, and several other scientific and
cultural organizations. He was a member of the
Academic Council of the Katholieke
Universiteit Leuven, and still is a member of its
Research Policy Council. Since 2002 he also
makes regular television appearances in the
Science Show 'Hoe?Zo!" on national television
in Belgium.

Full details on his CV can be found at

www.esat.kuleuven.ac.be/~demoor
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1983: First encounter

 What are data/measurements/observations ¢
 What are models ¢ Deduction, induction, inspiration
 What is noise ¢

 What are statistical assumptions worth ¢

« What are stochastic systems ¢

« Kalman: the Frisch scheme

« Least squares
« Mathematical rigor; accuracy and precision
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KATHOLIEKE UNIVERSITEIT LEUVEN

Fakulteit der Toegepaste Wetenschappen

Departement Elcktrotechnick C hap t er 5

Kard. Mercierlaan 94, 3030 Heverlee

Identification of Linear Relations
in Noisy Data

Mathematical Concepts and
Techniques for Modelling of

Models are a matter of inspiration,

Static and Dynamic Systems not of deduction.
Jan Willems.

Jury:
Prof.Dr.Ir. J. Delrue, vice-dekaan, voorzitter
Prof.Dr.Ir. J. Vandewalle, promotor
Prof.Dr.  A. Bultheel

Dr.Ir. A. Barbé

The reader is referred to some recent papers by
e Kalman (1982, 1983) in which he discusses (mainly
Pt G in an econometrics context) the problem of model-
ling on the basis of data and in which he argues
the limited value of the statistician’s stochastic
approach.

The Frisch scheme:

Given a positive definite n X n matrix ¥. Find all nonnegative diagonal matrices 3 and all
n-vectors @ such that: '

1.E=3%-3%is nonnegative definite

A

2. corank(X) is maximal

3.3z =0 . 7/8/2014 @5
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Automatica, Vol. 22, No. 5, pp. 561-580, 1986 0005-1098/86 $3.00 + 0.00
Printed in Great Britain. Pergamon Journals Ltd.
© 1986 Int ional Federation of Aut ic Control

From Time Series to Linear System—
Part I. Finite Dimensional Linear Time Invariant
Systems*

JAN C. WILLEMS}

Automatica, Vol. 22. No. 6, pp. 675-694, 1986 0005-1098/86 ISSJJD + llJJ.t:lu
Printed in Great Britain. ) . Pergamon oumals_ .
© 1986 International Federation of Automatic Control

From Time Series to Linear System—
Part II. Exact Modelling*

JAN C. WILLEMS#}

Automatica, Yol. 23, No. 1, pp. 87-113, 1987 0005-1098/87 $3.00-+0.00
Printed in Great Britain. Pergamon Journals Lid,
© 1987 International Federation of Automatic Control

From Time Series to Linear System—Part I11.
Approximate Modelling*

JAN C. WILLEMSt 7/8/2014 @7



Automatica, Vol. 22, No. 5, pp. 561-580, 1986 0005-1098/86 $3.00 + 0.00
Printed in Greal Britain. Pergamon Journals Lid.
i 1986 International Federation of Automatic Control

From Time Series to Linear System—
Part 1. Finite Dimensional Linear Time Invariant
Systems*

JAN C. WILLEMS?

Dynamical systems are defined in terms of their behaviour, and input/output systems
appear as particular representations. Finite dimensional linear time invariant systems
are characterized by the fact that their behaviour is a linear shift invariant complete
(equivalently closed) subspace of (RY)* or (RY)*+.
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Abstract—In the first part of this paper the definition of a
dynamical system as simply consisting of a family of time series
will be developed. In this context the notions of linearity,
time invariance, and finite dimensionality will be introduced.
It will be shown that a given family of time series may be
represented by a  system of (AR)  equations:
Rwit+ )+ R_wit+1—1)+-+ Ryw(t) =0, or, equi-
valently, by a finite dimensional linear time invariant system:
X(t + 1) = Ax(z) + Buft); y(t) = Cx(t) + Duit); w = (u,y), if and
only if this family is linear, shift invariant and complete (or, as
is equivalent, closed in the topology of pointwise convergence).
This yields a very high level and elegant set of axioms which
characterize these familiar objects. It is emphasized, however,
that no a priori choice is made as to which components of w
are inputs and which are outputs. Such a separation always
exists in any specific linear time invariant model. Starting from
these definitions, the structural indices of such systems are
introduced and it is shown how an (AR) representation of a
system having a given behaviour can be constructed. These
results will be used in a modelling context in Part II of the

paper.
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The totality of possible events (before we have modeled the phenomenon) forms a set T,
called the universum. A mathematical model of the phenomenon restricts the outcomes
that are declared possible to a subset # of U; 4 is called the behavior of the model. I refer
to (T, %) (or to £ by itself, since TJ usually follows from the context) as a mathematical
model.

In the study of dynamical systems we are, more specifically, interested in situations
where the events are signals, trajectories, 1.e. maps from a set of independent variables
(time, or space, or time and space) to a set of dependent variables (the values taken on
by the signals). In this case the universum is the collection of all maps from the set of
independent variables to the set of dependent variables. It is convenient to distinguish these
sets explicitly in the notation: T for the set of independent variables, and W for the set
of dependent variables. T suggests ‘time’, but in distributed parameter systems T is often
time and space. I have incorporated distributed systems because of their importance in
engineering models. Whence a (dynamical) system 1s defined as a triple

¥ = (W,T, %)

with 4. the behavior, a subset of W' (W is the standard mathematical notation for the set
of all maps from T to W). The behavior is the central object in this definition. It formalizes
which signals w : T — W are possible, according to the model: those in 4, and which are
not: those not in 4.



4. Kepler’s laws describe the possible motions of the planets in the solar system. This
defines a dynamical system with T = R, W = K>, and 4 the set of maps w: R — R? that
satisfy Kepler’s laws: 1. the orbits must be ellipses in R with the sun (assumed in fixed
position, say the origin of R?) in one of the foci; 2. the radius vector from the sun to the
planet must sweep out equal areas in equal time, and 3. the ratio of the period of revolution
around the ellipse to the major axis must be the same for all w’s in 2.

Law 1: Orbit is ellips with Sun in focus

Law 2: Radius vector sweeps out
equal areas in equal time
Law 3: le - mﬁi’

T22 & m%

sy o

.
-t

b
o

1. Newton's second law imposes a restriction that relates the position g of a point mass
with mass m to the force F acting on it: F = mggfj. This is a dynamical system with
T =R W =R> x R? (typical elements of 2 are maps (7,F) : R = R? x R&?), and behavior
2 consisting of all maps € R~ (7,F) (1) € R} x R? that satisfy F = ”f%é'a. I do not

specify the precise sense of what it means that a function satisfies a differential equation (I
will pay no attention to such secondary issues).

From conic sections to centripetal
forces and states
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THE CLASSICAL view of modelling is the descriptive
one of the physicist: nature functions consistently

according to some universal laws and the task is
to discover them.

In some cases, it may, in principle, be possible to
obtain such laws by deduction or extrapolation
from observed data. In Willems (1979) it has been
shown how one can for example view Newton’s
laws as a logical extrapolation of Kepler's laws.
However, the practice in the descriptive sciences is
really not this; it is much more the concept of
falsification than that of deduction which is the
central idea. This observation, in fact, has formed
the cornerstone of the philosophy of science since
Popper. Models and laws are postulated, often on
the basis of an Aristotelian philosophical view and
aesthetic appeal, and it is only later that one
discovers that, to some extent, they could also have
been deduced from already existing knowledge and
observed facts. In this sense, models are obtained
neither by deduction, nor by induction, but by
inspiration.

o
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Hypotheses

Induction :
Deduction

Test of Predictions redictions

Observation by Experiment-Resources.com

» &

. b

T CI. Popper (1963, p. 36). “Every good scientific theory is
prohibition, it forbids certain things to happen. The more it
forbids, the better it is. A theory which is not refutable by any
conceivable event 1s non-scientific. Irrefutability is not a virtue
of a theory (as people often think) but a vice.”

‘ 4 7/8/2014 ©13
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The Behavioral
Approach to Open and
Interconnected Systems

JAN C. WILLEMS

MODELING BY TEARING, ZOOMING, AND LINKING

with me. He put forward the following paradigm for research
domains that combine models and mathematics:
1) Get the physics right.
2) The rest is mathematics.
Did we, system theorists, get the physics right? Do our basic model structures adequately
translate physical reality? Does the way in which we view interconnections respect the physics?
These questions, in a nutshell, are the theme of this article.

The motivation for the behavioral approach stems from the observation that classical system-
theoretic thinking is unsuitable for dealing on an appropriately general level with the basic tenets
at which system theory aims, namely, open and interconnected systems. By an open system, we
mean a system that interacts with its environment, for example, by exchanging matter, energy, or

information. By an interconnected system, we mean a system that consists of interacting subsystems.
Classical system theory introduces inputs, outputs, and signal-flow graphs ab initio. Inputs serve
to capture the influence of the environment on the system, outputs serve to capture the influence
of the system on the environment, while output-to-input assignments, such as series and feed-
back connection, serve to capture interconnections. A system is thus viewed as transmitting
and transforming signals from the input channel to the output channel, and intercon-
nections are viewed as pathways through which outputs of one system are
imposed as inputs to another system.
Laws that govern physical phenomena, however, merely impose
relations on the system variables, while interconnection means
that variables are shared among subsystems. For

uring the opening lecture of the 16th IFAC
World Congress in Prague on July 4, 2005, Rudy
Kalman articulated a principle that resonated very well

Digital Object ldentifier 10.1109/MCS.2007.906923

46 |EEE CONTROL SYSTEMS MAGAZINE » DECEMBER 2007

1066-033X/07/$25.00E2007IEEE



DO05-1098/86  $3.00 + 0.00
Pergamon Journals Lid.
© 1986 International Federation of Automatic Conirol

Automatica, Vol. 22. No. 6, pp. 675-694, 1986
Printed in Great Britain,

From Time Series to Linear System—
Part II. Exact Modelling*

JAN C. WILLEMSfY

The most powerful unfalsified model is defined as that element in a model class which
explains a given set of observations and as little else as possible. Algorithms are
developed which compute the most powerful unfalsified linear time invariant model

starting from an observed time series.

ONE OF THE central issues in the modelling of
dynamical phenomena may succinctly be formu-
lated as follows:

Given an observed g-dimensional vector time series
ﬁ{tﬂ}!i“l}-l- ]]!"-3ﬁﬁl) (_mgro-{zf‘{_‘hi_cﬂ}

with w(t)e R?, find a dynamical model which explains these

o observations.
7/8/2014 @ 15



as well. Before spelling out the algorithm the notion
of the relative row rank r(M,; M,) of a partitioned

M
(infinite) matrix M = IEM-I-] is introduced. Assume
2
first that M = col(M,; M,) is finite: M, e R*1™¥,
M,eR"%  Then r(M,;M,):=rank M, +
rank M, — rank M. Next, assume that M has an

Now consider w: Z — R? and define the following
partitioned (4 way infinite) Hankel matrix -

Wt = 1) W) e #O)
ii'{—é) ii'(:—l) w(' :- 1)
oo M) MO MO
OB I
w(t — 1) ﬁ'(t) w(t + t')

The relevance of the motion of relative row rank
follows from the following result.

Proposition 20. r(3 _(Ww), 5 ,(W)) < co. In fact, it
equals the dimension of a minimal state space
representation X (A', B, C', D'} of #(RY), the most
powerful unfalsified (AR) model for w.



Exact subspace identification

dim|[R(A) N R(B)] dimR(A) +dimR(B) —dmR( A B)

A+ TB — TAB

Rl R(Wgi_1) N R(Wii ) | = R((X5)")

Xt \ (A B)(X?
Yii ) \C D)\ Uy,

known known
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Automatica, Vol. 23, No. 1, pp. 87-115, 1987 0005-1098/87 $3.00+0.00
Printed in Great Britain. Pergamon Journals Lid.
© 1987 International Federation of Automatic Control

From Time Series to Linear System—Part IIL
Approximate Modelling*

JAN C. WILLEMS+

An optimal approximate model, defined in terms of the complexity of a model and the
misfit between a model and the observed data, yields algorithms for computing an
optimally fitting model with a maximal admissible complexity or, alternatively, a
minimally complex model which explains an observed time series up to a maximally
tolerated misfit.
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The complexity can be viewed as the inverse of
the power of a model and is hence a quantitative
measure for expressing how powerful a model
actually is. The misfit &(Z, M) indicates how far the
model M fails to explain the measurements Z. Large
complexity and large misfit are both undesirable
properties of a model. Models with large complexity
explain too much, while models for which the
misfit is large explain the observations poorly and
therefore do not inspire much confidence.

Fix the maximal admissible complexity, ¢*™.,

In this methodology the optimal approximate
model has an allowed complexity level (i) and,
within this class, a minimal misfit (ii). However, if
there are many models achieving this minimum,
then it is logical to choose the one which has
smallest complexity (iii). This often induces unique-
ness, while (i) and (ii) alone may not.

Fix the maximal tolerated misfit, &°.

In this methodology the optimal approximate
model has a tolerated error level (i) and, within this
class, a minimal complexity (ii). However, if there
are many models achieving this minimum, then it
is logical to choose the one which has smallest
misfit (iii). This often induces uniqueness, while (i)
and (ii) alone may not.

7/8/2014 @ 19



William van Occam (1290-1349).
“Entia non sunt multiplicanda praeter necessitatem”
(Wezensbegrippen moeten niet onnodig vermeerderd worden)

Simpler explanations of the same phenomenon are preferable over
complicated ones

v CECI N’EST PAS UNE PIPE )

magits, Reality is just another model




Subspace identification

« Subspace identification = Jan Willems + numerical linear
algebra (SVD, QR, EVD)

y SUBSPACE
« “The development of subbspace IDENTIFICATION
. e : : FOR
|der'1’r'|f|co’r|.on methods is the most LINEAR SYSTEMS
excifing thing that has happened N AR
to system identification the last 5 i el

years or so.”
Lennart Ljung, ERNSI, LLN, 1993

Peter van Overschee
Bart De Moor

Kiuwer Academic Publishers
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As j — o

rank (Y7/, W)
row space (Y /Uf W)
column space (Y7 /E-"f W, )

T

row space ( X;)

column space ([';)
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input-output
data ug, yk

Orthogonal or
oblique projection

Kalman state
sequence

Least
squares

System matrices

(Classical
identification

h

System matrices

Kalman

filter

h

Kalman states




input-output
data uy, yi

Subspace
identification

Reduced state
sequence

Least
squares

Reduced model

(Classical
identification

h

High order model

Model

reduction

h

Reduced model
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Exact and
Approximate
Modeling

of Linear Systems

A Behavioral Approach

van Markovsky
Jan €, Willems
Sabire Van Hulfe]
Bart De Moor

4\ MathWorks

The toolbox provides identification
techniques such as maximum likelihood,
prediction-error minimization and
subspace system identification.
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Festschrift Okko Bosgra: Linear systems in discrete time

Abstract Representations of linear time-invariant discrete-time systems are dis-
cussed. A system is defined as a behavior, that 1s, as a family of trajectories mapping
the time axis into the signal space. The following characterizations are equivalent:
(1) the system is linear, time-invariant, and complete, (i1) the behavior is linear, shift-
invariant, and closed, (iii) the behavior is kernel of a linear difference operator with
a polynomial symbol, (iv) the system allows a linear input/output representation in
terms of polynomial matrices, (v) the system allows a linear constant coefficient
input/state/output representation, and (vi) the behavior is kernel of a linear differ-
ence operator with a rational symbol. If the system is controllable, then the system

also allows (vii) an image representation with a polynomial symbol, and an image
representation with a rational symbol.

Festschrift Alberto Isidori: System Interconnection

It 1s a pleasure to contribute an essay to this volume dedicated to Alberto Isidori on
the occasion of his 65-th birthday. As the topic of my article, I chose an 1ssue which
1s at the core of systems thinking, namely the formalization and the mathematization
of system interconnection. This pertains to linear and nonlinear systems alike. In

° 7/8/2014 @27



Festschrift Keith Glover

A Festschrift is a welcome occasion to write an article with a personal and his-
torical flavor. Because of the occasion, I chose the subject of Keith Glover’s Ph.D.
dissertation, SYSID. My interest in this area remained originally limited to the impli-
cations of the structure of linear systems. This situation changed with the Automatica
papers [35]. These contain, in addition to the first comprehensive exposition of the
behavioral approach to systems theory, a number of new ideas and subspace type-
algorithms for SYSID. The aim of the present article is to explain in a somewhat
informal style my own personal point of view on SYSID. Among other things, I will
describe in some detail the many representations of linear time-invariant systems,
leading up to some exact deterministic SYSID algorithms based on the notion of the
most powerful unfalsified model. I will then explain the idea behind subspace algo-
rithms, where the state trajectory is constructed directly from the observations and a
system model in state form 1s deduced from there. Subsequently, I will discuss the
role of latent variables in SYSID. This leads in a natural way to stochastic models. I
will finish with some remarks on the rationale, or lack of it, of viewing SYSID in a
stochastic framework.
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Misftit, complexity, latency

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 10, OCTOBER 2005

Application of Structured Total Least Squares for
System Identification and Model Reduction

Ivan Markovsky, Jan C. Willems, Sabine Van Huffel, Bart De Moor, and Rik Pintelon, Fellow, IEEE

Abstract—The following identification problem is considered:
Minimize the £; norm of the difference between a given time series
and an approximating one under the constraint that the approxi-
mating time series is a trajectory of a linear time invariant system
of a fixed complexity. The complexity is measured by the input
dimension and the maximum lag. The question leads to a problem
that is known as the global total least squares problem and alter-
natively can be viewed as maximum likelihood identification in the
errors-in-variables setup. Multiple time series and latent variables
can be considered in the same setting. Special cases of the problem
are autonomous system identification, approximate realization,
and finite time optimal ¢ model reduction. The identification
problem is related to the structured total least squares problem.
This paper presents an efficient software package that implements
the theory. The proposed method and software are tested on data
sets from the database for the identification of systems DAISY.

© 7/8/2014 @29



Stochastic systems

« Akaike
« Caines, Lindquist, Piccl, etc....

rank (Y;/Y,) = n
row space (Y;/Y,) = row space ( X;)

N

column space (Y;/Y,) = column space (I)
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Open Stochastic Systems

Jan C. Willems Life Fellow, IEEE

IEEE Transactions on Automatic Control
Volume 58, pages 406-421, 2013

Abstract—The problem of providing an adequate definition of
a stochastic system is addressed and motivated using examples.
A stochastic system is defined as a probability triple. The
specification of the set of events is an essential part of a
stochastic model and it is argued that for phenomena with as
outcome space a finite dimensional vector space, the framework
of classical random vectors with the Borel sigma-algebra as
events is inadequate even for elementary applications. Models
very often require a coarse event sigma-algebra. A stochastic
system is linear if the events are cylinders with fibers parallel to
a linear subspace of a vector space. We address interconnection of
stochastic systems. Two stochastic systems can be interconnected
if they are complementary. We discuss aspects of the identification
problem from this vantage point. A notion that emerges is
constrained probability, a concept that is reminiscent but distinet

from conditional probability. We end up with a comparison of

open stochastic systems with probability kernels.
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Multidim Syst Sign Process (301 1) 22:45-53
O] 10L1007 ] 108501001 35

Markovian properties for 2D behavioral systems
described by PDE’s: the scalar case

Paula Rocha - Jan C. Willems

Roceived: 1 April 20101 Revised: 9 Juns 20107 Accepted: 15 Junc 20010/
Published oaline: 1 July 2010
2 Springer Scicnoc+Husiness Media, 1.1.C 2010

Abstract In this paper we study the characterization of deterministic Markovian propertics
for 2D behavioral systems in terms of their descriptions by PDE’s. In particular, we consider

scalar sysiems and show that in this case strong-Markovianity is equivalent o the exisience
of a first order PDE description.

Keywords 2D systems - Behavioral approach - Markovian properties

< Subspace identification for nD systems ?
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Jan the mentor

« For generations of PhD, masters and undergraduate students

« |con for the Systems and Control community, in the
Netherlands, Europe and overseas

« Advisor of 72 Master's Theses

« Mathematical genealogy

. (QQCSOBQ)D students: From Keith Glover (1973) to Bart Van Luyten
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http://genealogy.math.ndsu.nodak.edu/id.php?id=49680
http://homes.esat.kuleuven.be/~jwillems/Curriculum.html

1999

60th
birthday

Keith Glover, Madhu Belur, Siep Weiland, Arjan van der Schaft, Henk
Nijmeijer, Harry Trentelman, Jan Willem Polderman; second row: Tommaso
Cotroneo, Paolo Rapisarda, Paula Rocha, Fabio Fagnani, Berend Roorda,
Christiaan Heij, Tonny ten Dam.
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Jan the scholar

« One of the founding fathers of mathematical system
theory; pursuer of system theoretic paradigms; helped
shaping the field

« Huge contributions to the field of systems and control, as
a scienftist and an organizer

« Many people benefitted from his vision and personal
perspective

« Ciritical but positive and constructive thinker

« Unigue mix of creativity, associative power, ability for
deep insights that he loved to share

« Responsibility and dedication, true scholar
« Argued with energy but also listened empathically
« Perfectionist care for rigor and details

« ‘Science should be left to scientists, not to administrators’
7/8/2014 @ 37



Jan the friend

‘Un grand monsieur’
Cheerful, enthusiastic, inspiring
Wonderful, considerate and animated

*
Charisma (‘the *X'-factor)

>

Natural charm and skills in
diplomacy and persuasion

Talented story teller

Enjoyed company with
goMzs on&fl meal

| energy




Remembering Jan

It is hard to imagine a world without Jan Willems.
But he is not far away.

When you read him, you hear him speak.
When you understand him, you feel the mentor.
When you cite him, you will remember him.

The products of his scientific activity,

the way he shaped our field of systems and confrol,
his influence on the scientific taste and thinking,

of generations of students,

will remain for ever.
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http://janwillems-memoriam.net
http://homes.esat.kuleuven.be/~jwillems/

